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A model for the supercooled liquid is considered by taking into account its solidlike properties. We focus on
how the long time dynamics is affected due to the coupling between the slowly decaying density fluctuations
and the local displacement variables in the frozen liquid. Results from our model agree with the recent
observation of Novikov and Sokolov �Nature �London� 431, 961 �2004�� that the fragility index m of a glass
forming material is linearly related to the corresponding ratio K /G of the bulk and the shear moduli.
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I. INTRODUCTION

Understanding the basic mechanism for solidification of a
supercooled liquid into an amorphous structure constitutes an
area of much current research interest in condensed matter
physics. As the liquid is increasingly supercooled its shear
viscosity � increases and the dynamics slows down enor-
mously. The glass transition temperature Tg is characterized
by the generic value of ��1014 P with the corresponding
relaxation time reaching the laboratory time scales. Experi-
ments show that the nature of relaxation in different super-
cooled liquids approaching the glass transition is not univer-
sal. Liquids have been classified as fragile or strong
depending on their dynamical behavior in the vicinity of Tg.
Strong liquids show a steady increase of viscosity with the
lowering of temperature. In fragile systems the viscosity first
increases slowly in the temperature range higher than Tg and
this trend is followed by a much sharper increase of � near
Tg. This classification of different glass forming materials is
facilitated in terms of the so-called fragility parameter de-
fined �1� as

m = � ln �/��Tg/T��Tg
. �1�

More recently evidence of a dynamic crossover in the value
of the viscosity induced by pressure change has also been
reported �2�. An associated characteristic of the supercooled
state is its solidlike behavior �3�. This is manifested in the
elastic response of the system to an applied stress. The elas-
tic behavior persists for times shorter than the structural re-
laxation time. The frozen solid with amorphous structure has
transverse sound modes in addition to the longitudinal modes
which are present in the normal liquid state. Recently No-
vikov and Sokolov �4� have demonstrated that the fragility
parameter m of a liquid is linearly related to the correspond-
ing ratio K /G of its bulk and shear moduli, i.e., m−17
=29�K /G−1�. The dependence of the fragility and the vibra-
tional properties of the liquid on the basic interaction poten-
tial was also tested recently with computer simulations �5�.
This strengthens further the possibility of understanding the
vibrational and relaxation properties of the frozen liquid
from a common standpoint.

In the supercooled state of the liquid, a tagged particle
makes a rattling motion and is temporarily trapped in the
cage formed by its neighboring particles. The cage eventu-
ally breaks giving rise to continuous particle motion. The

time for which the tagged particle is localized grows with
supercooling. The time correlation function of the collective
density fluctuations develops a plateau over intermediate
times and eventually decays to zero. Ergodicity thus persists
in the supercooled liquid over the longest time scales. This
behavior of the density correlation function is explained in
the mode coupling theory �MCT��6� of supercooled liquids.
The basic theoretical scheme used in this approach involves
a formulation of the dynamics in terms of a few slow vari-
ables. In this paper we present using the mode coupling ap-
proach a model which includes the solidlike properties of a
supercooled liquid. We study the effects on the dynamics due
to the couplings of slowly decaying density fluctuations with
the extra slow modes present in the amorphous solid. Our
results conform to the above linear relation between m and
K /G reported in Ref. �4�. The paper is organized as follows.
In the next section we present the model for the dynamics
using an extended set of slow modes for the liquid state. In
Sec. III we present the results from the model and demon-
strate how it explains the observed data for simple liquids.
We end the paper with a discussion.

II. MODEL STUDIED

A. Nonlinear dynamics of slow modes

The dynamics of the liquid is formulated in terms of a
small set of slow modes. The MCT is a basic step in this
direction for studying the dynamics of a strongly interacting
liquid �at high density� by taking into account the effects of
coupling the slow modes in the system. The simplest version
of MCT deals with the conserved densities of mass and mo-
mentum, respectively, denoted by ��x , t� and g�x , t�. We as-
sume the system to be a collection of N classical particles
each of mass m̄. r���t� and p�

� �t� are, respectively, the position
and the momentum of the �th particle at time t. For the

density �̂ and the momentum density g�̂ we use the standard
prescription �7�,

�̂�x�,t� = m̄�
�=1

N

�„x� − r�
� �t�… ,

gi
ˆ �x�,t� = �

�=1

N

p�
i �t��„x� − r�

� �t�… . �2�

For the solidlike state in which the particles vibrate about
their mean positions, the above set of slow modes is further
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extended to include the new collective variable �8� u�x , t�.
This is defined in terms of the displacements u��t� of the �th
particle ��=1 to N� from their respective mean position de-
noted by R�

0 �9� such that R��t�=R�
0 +u��t�. We adopt the

definition

�̂�x�,t�ui
ˆ �x�,t� = m̄�

�=1

N

u�
i �t��„x� − r�

� �t�… , �3�

The metastable positions of the atoms R�
0 ��=1 to N� in the

glassy system remain unaltered for a long time. In a crystal
with long range order these positions are independent of
time. The equation of motion for u is obtained using standard
procedure �9,10� in the form of a generalized Langevin equa-
tion,

�ui

�t
+

g

�
· �ui =

gi

�
− �ij

�F

�uj
+ f i, �4�

where indices i , j refer to the different spatial coordinate
axes. The Gaussian noise f i is related to the bare damping
matrix �ij, through the fluctuation dissipation relation,
�f i�x , t�f j�x� , t��	=2kBT�ij��x−x����t− t��, where kBT=�−1

is the Boltzmann factor. The average thermal speed of a liq-
uid particle of mass m̄ is v=1 /
�m̄. F�� ,g ,u� is the effec-
tive Hamiltonian such that the probability of the equilibrium
state is given by e−F. For the isotropic solid F is obtained in
the general form �9,11�

F =� dx

2
�g2

�
+ A����2 + 2B��sT + KsT

2 + 2Gs̃ijs̃ji , �5�

where ��=�−�0 is the density fluctuation and �0 is the av-
erage mass density. The quantities A and B in Eq. �5� are
related to the static structure factor �correlation of density
fluctuations at equal time� for the amorphous solid. The sym-
metric strain tensor field sij is defined in terms of the gradi-
ents of the displacement field u�x�, 2sij = ��iuj +� jui�
−�ium� jum �such that sij =sji�. The trace and the traceless
parts of sij, respectively, defined as sT=�isii and s̃ij =sij
−�ijsT /3, appear in the expression �5� for free energy of the
isotropic solid.

The equation of motion for � is the continuity equation,

��

�t
+ � · g = 0. �6�

For the momentum density g the dynamics is given by the
generalized Navier-Stokes equation,

�gi

�t
+ �

j

� j�ij = �i, �7�

where �i’s are the Gaussian noises related to the bare or short
time transport properties of the liquid �12�. The symmetric
stress tensor �ij is obtained as a sum of the reversible part �ij

R

and the irreversible �dissipative� part �ij
D, such that �9�

�ij
R =

gigj

�
+ P�ij − 2Gsij + 2sij�K̄sT + B��� + 4Gsimsjm,

�8�

where K̄=K−2G /3. The quantity P in Eq. �8� is identified
with pressure in conventional hydrodynamics and is obtained
as a local functional of the hydrodynamic fluctuations,

P = �A�0 − B��� + �B�0 − K̄�sT + A
��2

2
− K̄

sT
2

2
− Gslmsml.

�9�

The dissipative part of the stress tensor �ij
D is expressed in

terms of the bare viscosities.

�ij
D = − �0��iv j + � jvi −

2

3
�ij�� · v� − 	0�ij�� · v� ,

�10�

where �0 and 	0 are the bare shear and bare bulk viscosities,
respectively, and v�g /�.

B. Renormalization of transport coefficients

The time correlation functions of the slow modes are ob-
tained by averaging over the noises in the nonlinear equa-
tions of motion using standard field theoretic methods �13�.
The correlation functions between two slow modes 
� and

� are defined as

G���12� = �
��1�
��2�	 . �11�

The dispersion relations for the various hydrodynamic modes
in the system are obtained from the pole structures of the
correlation functions. The corrections to the correlation func-
tions due to the nonlinearities in the equations of motion for
the slow variables are expressed in terms of the self-energy
� defined through the Dyson equation

G−1�q,�� = �G0�q,���−1 − ��q,�� . �12�

G0�q ,�� refers to the matrix of the correlation functions cor-
responding to the linear dynamics of the fluctuations. Assum-
ing the amorphous solid state to be isotropic the correlation
function can be separated in terms of a longitudinal and a
transverse part as

G�i�j
�q,�� = qi

ˆ qj
ˆ G��

L �q,�� + ��ij − qi
ˆ qj

ˆ �G��
T �q,�� .

�13�

Similarly the self-energies are split into their respective lon-
gitudinal and transverse parts denoted by �L and �T. Using
the Dyson equation �12� the renormalized viscosity of the
liquid taking into account the nonlinearities in the dynamics
is obtained in the form

��q,�� = �0 + � 1

2kBT
ĝĝ

L �q,�� �14�

where
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�ĝĝ
T,L�q,�� = − q2ĝĝ

T,L�q,�� . �15�

The functional forms of the self-energies are computed with
the diagrammatic techniques of the Martin-Siggia-Rose
�MSR� field theory �14�. Of particular interest in the context
of glassy dynamics is the density auto correlation function
��q , t�. The Laplace transform of ��q , t� �which is normal-
ized with respect to its equal time value� is obtained as a two
step continued fraction in terms of the memory function
��q ,z� �12�,

��q,z� =
1

z − �0
2/�z + ��q,z��

. �16�

�0 is the microscopic frequency of the liquid state �15�. For
the case of a normal liquid with only the standard set of
conserved densities as a slow variable, the dominant nonlin-
earity in the momentum equation comes from the coupling of
the density fluctuations in the pressure functional in Eq. �8�.
This obtains �16� the standard mode coupling model in
which memory function includes only products of density
correlation functions �17,18�. The present formulation in-
volving an extended set of hydrodynamic variables which
include u �in addition to the conserved densities� obtains the
longitudinal as well as the transverse sound modes in the
amorphous solid. Their speeds are, respectively, obtained as
cL

2 =M /�0+A�0−2B and cT
2 =G /�0 �11�, where M =K

+4G /3 is the longitudinal modulus. By including the cou-
pling of density fluctuations �� with the displacement field u
�see Eq. �8��, a new contribution to the memory function
��q , t� is obtained. At the one loop level this is obtained as

��q,�� = �0 + ��1��q,�� + ��2��q,�� , �17�

��1��q ,�� and ��2��q ,�� are given by the expressions

��1��q,�� =
8B2

kBT
� d3p

�2��3 � d�

2�
p2�u4Guu

L �p,��

+ u2�1 − u2�Guu
T �p,���G���q − p,� − ��

�18�

and

��2��q,�� =
A2

kBT
� d3k

�2��3 � d�

2�
G���k,��G���q − k,� − �� .

�19�

The role of convective nonlinearities is assumed to be ab-
sorbed in �0 which is the bare part or short time part of the
transport coefficients. The contribution ��1� is obtained from
the first diagram of Fig. 1 resulting from the coupling of the
displacement field u with the density fluctuation ��. ��2� is
the contribution from the second diagram in Fig. 1 coming
from the coupling of density fluctuations. In evaluating these

diagrammatic contributions we make the approximation that
for time scales �short compared to the structural relaxations�
over which the supercooled liquid displays elastic behavior,
the longitudinal and transverse correlations of the displace-
ment field are frozen �constant in time�, i.e., �uu

L,T�����.
Therefore as a result of the solidlike behavior over interme-
diate time scales, Guu

L and Guu
T are then obtained as

Guu
L �k,t� =

kBT

Mk2 , Guu
T �k,t� =

kBT

Gk2 , �20�

where the k−2 dependence of the correlation function arises
from the static structure factor for the displacement fields.
Substituting these approximate forms for the displacement
correlations and evaluating the integrals in Eqs. �18� and
�19�, we obtain for the density correlation function and the
memory function the simple form of coupled nonlinear inte-
gral equations,

��z� =
1

z − �0
2/�z + ��z��

, �21�

��t� = c1��t� + c2�2�t� , �22�

where in Eqs. �21� and �22� we have dropped the wave vec-
tor dependence of � and � for simplicity. The density corre-
lation function is approximated in the form G���q , t�
=����q���t� with ��� being the equal time correlation of the
density correlation function determined by the thermody-
namic properties such as temperature and density. The con-
stants c1 and c2 in Eq. �22� are determined from an evalua-
tion of the vertex functions in this approximation �of wave
vector independence� as

c1 =
8

3
� �0��

1 − ��
��1 + f����, c2 =

�0

�1 − ���2 , �23�

where ��=�0�1−2�� / �2−2��, and f���=2 /5�1−2�� with
� being the Poisson’s ratio �= �3K−2G� / �2�3K+G��. We
have used in the expressions �23� the definitions �0
=B2 / �AG� and �0= ��3 /6�2n0��v /cL�2 in terms of param-
eters dependent on the thermodynamic state of the system.
The equilibrium number density of particles in the fluid is n0
��0= m̄n0�. � is the upper cutoff of the wave vector repre-
senting the shortest length up to which the fluctuations are
considered. In considering the mode coupling expression for
the viscosity we have ignored here the presence of the very
slow vacancy diffusion mode and its coupling to density
fluctuations. Finally, it is useful to note here that we are
considering the simple form of the model in which all pro-
cesses giving rise to ergodic behavior in the asymptotic dy-
namics have been ignored.

III. RESULTS

The central focus in the present analysis is the time de-
pendence of the density autocorrelation function ��t�. From
the coupled set of equations �16� �inverse Laplace trans-
formed in the time space� and �22�, we obtain a nonlinear
integrodifferential equation for the dynamics of ��t�,

__
1

2
Σ̂

g
i
ĝ

j

=
^

ig

ρ ρ
+

ĝiĝ j

ρ

ĝ j

ρ
2 4

lu um ρ ρ

FIG. 1. Relevant one loop diagrams which contribute to the
effective viscosity as nonlinear corrections.
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�̈�t� + �̇�t� + ��t� + �
0

t

ds����t − s���̇�s� = 0, �24�

where the dots refer to derivative with respect to time. This
equation is solved numerically to obtain the behavior of the
density correlation function. It is clear that the dynamics of
the density correlation function ��t� is driven here by the
memory function ��t� which is expressed in terms of � it-
self. This constitutes a nonlinear feedback mechanism
�17,18� causing a dynamic transition of the liquid to a non-
ergodic state in which the long time limit of the density
correlation function ��t→ � �= f . The quantity f is termed as
the nonergodicity parameter �NEP�. In the plane of c1 and c2
the dynamic transition occurs along the line c1=2
c2−c2
�19�.

In Fig. 2 we display the phase diagram with c1 and c2
showing the ideal glass transition line. Though this dynamic
transition is finally cutoff due to ergodicity restoring mecha-
nisms, it marks a crossover in the dynamical behavior of
supercooled liquid. The liquid state is characterized by the
density correlation function following initial power law re-
laxations, followed by a final stretched exponential decay
��exp�−�t /���� �19,20�. In the glassy state the density cor-
relation function decays to a nonzero value equal to the non-
ergodicity parameter. In Fig. 2 we have also shown the val-
ues of c1 and c2 corresponding to the nonergodic states in
which the dynamics is studied in this paper �to be explained
below�. For presenting our results in the following, we ex-
press time in units of �0 / ��0cL

2� where �0=	0+4�0 /3 is the
bare longitudinal viscosity of the liquid related to its short
time dynamics. We keep the �0 appearing in the expression
�23� for the coupling constants of the memory function fixed
at a constant value �=0.4� throughout the calculation. This
numerical value is reached by treating �0 as an adjustable
parameter here for comparison of the results of the present
model with experimental data. This essentially implies that

the cutoff � of wave-vector integration is being treated as an
adjustable parameter in the coarse grained model we present
here.

A key quantity of interest in the present analysis is the
fragility parameter m which by definition is related to the
final relaxation behavior of the supercooled liquid near Tg;
but over this temperature range, the MCT approach has not
been very successful �6� in explaining the relaxation behav-
ior. A useful observation �4� in this respect is that the slope of
the viscosity vs inverse-temperature plot in the high tempera-
ture range can be linked with the fragility. This is justified as
follows: For very fragile systems �large m� the slope of the �
vs Tg /T curve at temperatures near Tg is large and hence it
must be correspondingly small at the other end of the Angell
plot, i.e., for temperatures much higher than Tg. This is be-
cause the curves for different m meet at both ends on the
Tg /T axis. By examining experimental data, it was pointed
out �4� that the slope of the � vs Tg /T curve on the high
temperature side is inversely related to the fragility m. Since
MCT is a valid theory for the slow dynamics well above Tg,
we have investigated the relaxation behavior which follows
from the present model in this high temperature range. We
focus on the growth of the relaxation time � instead of that of
the viscosity �. In our model, increasing the parameter �0
brings the system closer to the ideal transition �since it re-
sults in an increase of �� and hence this parameter is treated
like the inverse of temperature, �0�Tg /T. The dependence
of the relaxation time � on �0 at various �fixed� K /G values
is displayed in Fig. 3. For large K /G the observed variation
is similar to the � vs Tg /T curve of a fragile liquid. Although
according to the MCT model the power law behavior de-
scribes the relaxation time data in this range better, we fit �,
following Ref. �4�, to an Arrhenius form with activation en-
ergy �, i.e., ��exp���0�. By the property of the Angell plot
referred to above, we assume m̃=1 /� to be proportional to
the fragility m. �0 is proportional to Tg /T with the propor-
tionality constant being independent of K /G. Thus we as-
sume that constants A and B in the expression �5� for the free
energy are only functions of temperature and the two elastic

1 2 3 4 5
c

2

0

1

2

3

4

c 1

Ergodic Phase

Non-ergodic Phase

1.02

4.00

FIG. 2. �Color online� c1 vs c2 and the solid line displays the
dynamic transition line. The circles �joined with a solid line to
indicate continuity� shown in the nonergodic phase correspond to
the states for which the results of Figs. 5 and 7 are obtained ��0

=1.7�. These circles refer to different values of the ratio K /G of
bulk and shear moduli with the adjacent number to a circle indicat-
ing the corresponding value of K /G.

0.8 0.85 0.9 0.95
∆0

5

10

15

ln
τ

1.02 1.18 1.39

FIG. 3. �Color online� Log of relaxation time � in units of
�0 / ��0cL

2� vs �0 �see text�. The constant K /G value corresponding
to each curve is also displayed adjacent to it in the figure. The
dashed and dotted lines are, respectively, the power law and expo-
nential fits to the corresponding curve.
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constants K and G are to be treated as independent entities.
Figure 4 displays m̃ against the variation of K /G showing an
approximately linear behavior. Therefore the present model
agrees qualitatively with the linear correlation predicted by
Novikov and Sokolov. It should be noted that the inverse
nature of the relations between fragility and the slope of the
viscosity vs inverse-temperature plot, respectively, at the
high and low temperature sides is a property of the Angell
plot itself. However, the reciprocal relation i.e., ��1 /m, as
used above can only be justified in a qualitative manner. In
order to demonstrate the sensitivity of the results on the val-
ues of the parameters �0 and �0 we display in Fig. 4 the m̃ vs
K /G curves for different values of �0 ranging from �0=0.3
to 0.8. The nature of the curves are qualitatively similar to
what the best fit value for �0 obtains.

Next we consider the dynamics on the other side of the
transition when the density correlation function freezes to a
constant until ergodicity restoring processes take over. In the
glassy state, the NEP f is estimated from the plateau which
��t� reaches over a long time. Figure 5 displays the variation
of f with the ratio K /G. The nonergodic behavior and the
elastic response of the supercooled liquid as seen here are
valid over initial time scales for which the system is frozen

and is solidlike. However, estimating the fragility parameter
m directly involves computing the temperature dependence
of viscosity or relaxation time near Tg. As already pointed
out, the long time dynamics in the deeply supercooled state
close to Tg is still beyond the scope of MCT. Our calculation
of the NEP at low temperatures here only refers to interme-
diate time scales up to which the present description in terms
of the supercooled liquid is valid. Therefore in order to link
fragility m with the elastic properties of the supercooled liq-
uid we make use of the dependence of the fragility m on the
NEP f as inferred from analysis of experimental data �21�. In
Fig. 6 the data points and best fit curve for the experimental
results linking NEP f with the fragility m, i.e., m=167
−176f , is shown. The NEP values noted here are taken at the
glass transition temperature Tg �21�. To test this empirical
relation further we compare the �0= �1− f� / f vs m in the
inset of Fig. 6 with another set of experimental data �22�
from x-ray Brillouin scattering. Similar qualitative behavior
is seen validating the link between the NEP with the fragility.
The dependence of m on the ratio K /G of elastic constants is
then obtained through their common dependence on the NEP
f . The variation of m with K /G is shown in Fig. 7. We also
display the experimental data �from which the linear relation
of Ref. �21� was proposed� in the same figure, showing rea-
sonable agreement with the predictions of the present model.
In reaching this agreement between the theoretical model
and experimental data we adjust the temperature dependent
parameter �0 to the value 1.7. As argued above �0 is propor-
tional to Tg /T and hence if we assume near Tg, �0
=c0�Tg /T�, then c0=1.7 obtains the best fit of the present
model’s predictions with results of Ref. �4�. To demonstrate
the sensitivity of the results on the values of the adjusted
parameters we display in Fig. 7. �as in Fig. 4 for m̃� the
fragility m vs K /G curve for different values of �0 ranging
from �0=0.3 to 0.8. The �0 value is kept the same for all the
curves, i.e., �0=1.7. Usually fragility index measurements
refer to the slope of the viscosity vs inverse temperature plot
at the calorimetric glass transition temperature Tg. Hence the
parameter �0 has been kept fixed here. The roughly linear

1 2 3 4
K/G

2

4
m

λ0=0.4

λ0=0.3

λ0=0.8
∼

FIG. 4. �Color online� The inverse slope m̃ �see text� vs ratio
K /G of bulk and shear moduli at different �0 values, displayed in
the figure.

1 2 3 4
K/G

0.4

0.5

0.6

0.7

0.8

0.9

f

FIG. 5. �Color online� Nonergodicity parameter f vs the ratio
K /G of bulk and shear moduli from the present model ��0=1.7�.

0.6 0.9
f

0

40

80

m 0 40 80
m

0

1

α 0

FIG. 6. �Color online� Experimental data �points� and best fit
�line� to the experimental data Ref. �21� linking fragility index m
with f . The inset shows �0= �1− f� / f vs fragility index m �solid
line� �using the experimental best fit� and x-ray Brillouin scattering
data �solid triangles� �22�.
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behavior of the m vs K /G curve is retained over the whole
range of the value of the parameter �0. The variations of f
and m with K /G as displayed in Figs. 5 and 7, respectively,
are obtained at this same fixed value for �0. With the varia-
tion of K /G, the corresponding values of c1 and c2 are
changed as shown by filled circles in Fig. 2. With increasing
value of K /G we move to regions of small values of the
couplings c1 and c2.

Finally we make two predictions using the proposed
model linking the elastic behavior with relaxation properties
in the glassy systems. According to the present model the
density correlation function ��t� has a complex relaxation
behavior. On the ergodic side of the transition line, the initial
power law relaxations change over to a stretched exponential
decay with a stretching exponent �. As a further illustration
of the present model, we display in Fig. 8 the variation of the
stretching exponent � with the Poisson’s ratio �= �3K
−2G� / �2�3K+G��. For the results shown here we keep �0

fixed at a typical liquid state value �0=0.885. It should be
noted that following the discussion above, the � presented
here corresponds to temperatures much above Tg. On the
other hand, for computing the fragility m vs Poisson’s ratio �

in terms of the nonergodicity parameter f , as described above
in Figs. 5–7, we work on the nonergodic side of the transi-
tion line, i.e., in the glassy phase where the freezing of the
density correlation function is clearly visible ��0=1.7�. We
do not have in the present mode coupling model a way of
computing the � in this low temperature regime which will
require taking into account the role of ergodicity restoring
mechanisms in the long time dynamics. Hence the predicted
behavior of the stretching exponent should be tested at
higher temperatures away from Tg.

Another suitable quantity is the power law exponent of
relaxation near Tg. On the nonergodic side of the transition
line, the system is dynamically frozen initially until the er-
godicity restoring processes take over. For initial time scales
�beyond the microscopic times� the density correlation func-
tion develops a plateau f with a power law form ��t�= f
+Ct−a decay. From the present model we are able to predict
the dependence of the power law exponent a on the K /G
ratio. Figure 9 displays the dependence of the exponent a on
K /G. The inset shows the nature of the power law behavior
at a particular value of K /G=2.6. The curve is obtained at
�0=1.7. According to the predictions of the present model
the power law exponent grows sharply for less fragile sys-
tems indicating a sharper freezing of the system over inter-
mediate time scales for strong liquids.

IV. DISCUSSION

The present model for the amorphous system is con-
structed in terms of an extended set of slow modes. The
approximations which go into the present formulation of the
dynamics for the solidlike state are well-known and standard.
In order to define the slow variable which accounts for the
solidlike nature of the amorphous state, we require reference
to a rigid lattice. On the other hand the ergodicity restoring
process in the system invalidates the existence of any such
rigid structure over the longest time scales. Therefore the
elastic description of the liquid is only valid up to the time
scale of structural relaxation. A self-consistent treatment with
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FIG. 7. �Color online� Fragility index m vs ratio K /G of bulk
and shear moduli from the present model at different �0 values
�solid lines� ��0=1.7�, experimental data of Ref. �4� �points�.
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dynamic connections between the elastic and viscous behav-
ior of the system will possibly provide a way to make a
unified description including both of the above two aspects
of the glassy state. Furthermore, the atoms in the solid vi-
brate around the random lattice sites over intermediate time
scales. Generally strong glassy systems have a higher net-
work forming tendency than the highly fragile systems �23�.
In the latter structural degradation occurs more easily. Thus
for systems with very high m values the underlying assump-
tions of the present model hold for shorter time scales.

The present model which considers the relation of the
fragility of the liquid to its elastic properties brings out some
basic characteristics of the dynamics. In Fig. 7 we see that
the increase in the fragility m corresponds to higher values of
the ratio K /G while from Fig. 2 it follows that coupling c1
and c2 between the slow modes is weaker for larger values of
this ratio. Therefore the trend of the experimental data indi-
cates that in a more fragile system there is a weaker coupling
of the hydrodynamic modes. This is particularly relevant
since the coupling between the slow modes constitutes
�through the formulation of the mode coupling theories� the
basic mechanism for slow dynamics in supercooled liquids.
Also, since it follows from the present theory that larger
values of K /G give rise to lower values of the nonergodicity
parameter, the strength of the freezing or jamming of the
system is weaker in more fragile systems.

It is important to note that the present model is formulated
for the case of simple liquids and accordingly it is expected
to apply to only specific types of systems. The relation be-
tween m and K /G stated by Novikov and Sokolov is based
on the data analysis of nonmetallic and nonpolymeric sys-
tems �24�. Efforts to apply this scaling to a wider group
including metallic glasses or multicomponent systems fail
�25� for obvious reasons. Polymeric materials also clearly
deviate from this linear relation. Monomers follow similar
correlations, but increase in the chain length in some poly-
mers leads to the deviations �26�.

The model similar to the one used here having the
memory kernel with both linear and quadratic terms has been

initially proposed in Ref. �20�. However, the present form of
the ��t� �having direct relation to the elastic constants� is
only justified by including the displacement variable for the
amorphous solid �11� in the theoretical description. In this
regard it is useful to note that the past literature on MCT can
be broadly divided into two different groups. In one ap-
proach the dynamics of a supercooled liquid is studied start-
ing from the basic equations which apply to the liquid state
or crystalline state of matter. This is the scheme we have
followed in our analysis here. The set of nonlinear equations
we have considered for constructing the mode coupling
equations in the present context are �a� the conservation laws
for the mass and momentum and �b� the dynamical equation
for the extra slow modes for the solidlike state. The resulting
model linking the nonergodic behavior to the elastic proper-
ties then follows through a careful consideration of the non-
linearities in the dynamics. The present model thus extends
the standard MCT in a physically relevant manner to include
the solidlike nature of the supercooled state. On the other
hand, the MCT literature also have schematic models in
which ad hoc forms of memory functions are simply as-
sumed in order to consider different types of possible relax-
ation scenarios which follow from the nonlinear feedback
mechanism. It is only in this respect the present model is
technically similar to the schematic �12 MCT studied by
Götze. Finally, we have ignored here the wave vector depen-
dence of the model to focus on the basic feedback mecha-
nism. The parameter �0 has been treated as a temperature
dependent parameter ��Tg /T� in the model. The temperature
and density dependence of the results should follow in a
natural way when such extensions of the model are consid-
ered. This calculation will require implementing the proper
structure factor of the liquid in the formulation and will be
considered elsewhere.
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